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FINITE SLUMP STRAINS IN VERTICALy INFINITELY LONG, HOLLOW, 
ELASTIC CYLINDER, EXTERNALLY CASE-BONDED TO AN ELASTIC TANK 

Abstract j 7 5 9  
The problem of finite slump strains in a vertical, infinite, hollow, elastic 

cylinder, case-bonded to an elastic case, is solved assuming the material 

of the cylinder to  be incompressible, and further, to possess a strain 

energy density function of the Mooney type. 

of solution of a trancendental equation in a geometrical parameter. 

results for a set of realistic data is obtained and the effect of change 

in bore radius, case stiffness and the specific weight of the material 

The problem reduces to that 

Numerical 
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In t roduc t ion  

It is  not inErequent t h a t  s o l i d  p rope l l an t  rocke t  motors are s to red  f o r  

a cons iderable  length of time i n  a v e r t i c a l  pos i t i on .  

t he  g r a v i t y  f o r c e s ,  s t r e s s e s  and s t r a i n s  are induced i n  the  p rope l l an t  ma te r i a l .  

In gene ra l ,  t h e s e  s t r e s s e s  and s t r a i n s ,  i nc rease  with time, as t h e  p r o p e l l a n t s  

a r e  v i s c o e l a s t i c  i n  na ture .  For a r a t i o n a l  design of a rocke t  motor it is 

necessary t o  have a t  hand an es t imate  of t hese  s t r e s s e s  and s t r a i n s .  

such ana lys i s  are based on the  assumption, among o t h e r s ,  of t he  p rope l l an t  

being a l i n e a r l y  v i s c o e l a s t i c  mater ia l .  However, t hese  m a t e r i a l s  u sua l ly  a r e  

h igh ly  compliant so t h a t  t hese  ana lyscs  a r e  inadequate t o  represent  accu ra t e ly  

the  s t a t e s  of s t r e s s  and deformation i n  an a c t u a l  rocke t  motor. A more accu ra t e  

e s t ima te  could be achieved by an appropr ia te  nonl inear  theory of v i s c o e l a s t i c i t y .  

Such t h e o r i e s  have been developed during the  l a s t  t en  yea r s ,  however, they 

a r c  r e l a t i v e l y  complex and the  app l i ca t ion  of an appropr i a t e  theory  t o  most 

problems of p r a c t i c a l  i n t e r e s t  remains a h i t h e r t o  unachieved goal .  A g r e a t  

dea l  of u se fu l  information can, however, be obtained through an a n a l y s i s  

wherein t h e  ma te r i a l  i s  considered, as a f i r s t  approximation, t o  be e l a s t i c ,  

bu t  capable of s u s t a i n i n g  r a t h e r  la rge  deformations.  

r ep resen t s  j u s t  such an attempt t o  ga in  use fu l  i n s i g h t  i n t o  the  behavior of 

t he  core  ma te r i a l  of a v e r t i c a l  rocket motor under g rav i ty  loading. The 

a n a l y s i s  i s  made t r a c t a b l e  through s e v e r a l  i d e a l i z a t i o n s  and assumptions, such 

as those  of i n f i n i t u d e  of t he  length of the  rocket  motor, homogeneity and 

i so t ropy  of t h e  core  m a t e r i a l ,  i dea l  core-case bond, and incompress ib i l i t y  

of t h e  core  ma te r i a l .  I n  add i t ion ,  s e v e r a l  minor, r e a l i s t i c  assumptions have 

been made; these  a r e  s t a t e d  i n  context .  A s  i n  a previous r e p o r t  wherein 

't Numbers i n  bracke ts  des igna te  References a t  the  end of t he  paper. 

Under t h e  a c t i o n  of 

Usually 

The p resen t  problem 

[ 1y- 
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r' a pressurization problem was solved, the treatment here follows the approach 

and notation of Green and Zernai2', as far as possible. 

specialized to the case where the core material is taken t o  be'& iIoancy Materia c31 
Application of the solution method is demonstrated for a real set of data wherein 

several parameters are varied. 

almost trivial, infinitesimal theory solution. Several nonlinear, second order 

effects,absent in the latter theoryI emerge from the solution as expected. 

These have been discussed in detail. 

The results are 

The results are compared with the analogous, 
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The General Theory 

The i n i t i a l  po r t ion  of t h e  general theory fol lows the  i n i t i a l  po r t ion  of 

t he  previous reportc2' on the  p re s su r i za t ion  problem. However, f o r  reasons of 

completeness , the present  s tudy  i s  e n t i r e l y  se l f -conta ined .  

a problem solved by Green and Zerna* i s  followed i n  the  fol lowing t o  a c e r t a i n  

ex ten t .  

The s p i r i t  of 

Consider a v e r t i c a l ,  i n f i n i t e l y  long, hollow, c i r c u l a r  cy l inde r  of i n i t i a l  

e x t e r n a l  r ad ius  /4 and i n i t i a l  i n t e r n a l  rad ius  p2 . Let t h e  cy l inde r  be 

i d e a l l y  bonded t o  a t h i n  e las t ic  casing. 

Let t he  cy l inde r  be r e f e r r e d  t o  a rec tangular  Car tes ian  r e fe rence  frame 

(XI ,.xz, X3) with the  x3 -ax is  d i r e c t e d  v e r t i c a l l y  downwards, t he  o r i g i n  

being a r b i t r a r i l y  loca ted  on t h e  ax is  of t he  cy l inde r .  We r e f e r  t o  the  - 

undeformed cy l inde r  as t h e  body B . 
0 

Suppose, now, t h a t  we permit the weight of core  ma te r i a l  t o  a c t  g radual ly ,  

t ill  t h e  f u l l  weight i s  a c t i n g ,  r e s u l t i n g  i n  the  deformed conf igu ra t ion ,  body 

B, of t h e  body Bo. 

t he  assumed homogeneity of t he  ma te r i a l ,  t he  deformed body B a l s o  w i l l  be a 

c i r c u l a r  cy l inder .  L e t  i t  be r e fe r r ed  t o  another  r ec t angu la r  Ca r t e s i an  frame 

I n  view of t he  axial symmetry of t he  geometry and loads and 

( y' y', $1 which we t ake  t o  coincide with the  frame ( X' , X I ,  x3) , 

2'  index t o  index. L e t  t he  o u t e r  and the  inner  r a d i i  of body B be r1 and r 

r e spec t ive ly .  We r e c a l l  t h a t  t he  i n f i n i t e s i m a l  theory would p r e d i c t  t he  s t a t e  

of s t r a i n  i n  B as t h a t  of simple, nonhomogeneous shea r ing  s t r a i n .  
- 

Each p a r t i c l e  'P 
of B, accord ingly ,  would move a x i a l l y  only. We expec t ,  however, i n  r e a l i t y ,  a 

JC 

See p. 95 f f .  of Ref. (23. 
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departure from the state of simple shear, 

finite shear, for the given body forces, would require a finite radial pressure 

at the inner free boundary of the core, which, in fact, is traction-free. 

Maintenance of a state of simple 

where f is a 

body B, and g ' for 

follows : 
ij 

Let a polar cylindrical system (r, 8 2 ) be imbedded in the strained 

body B so that 

(1) y' = r  cos^, y 2 = r sine, y 3 = z 

We shall designate the system (r, 8 , Z  ) alternatively as (e'  & e 3 )  . 
As a result 05 axisymmetry of deformation, the system of curvilinear coordinates, 

which is convected into (r , 0 ,  2 ) as a result of deformation, is also polar 

cylindrical, say ( p ,  0 , s  ) , wherein we take P=P(s) to be a function of 
r only. 

in B , corresponding to the point p (. 
Thus, the rectangular Cartesian coordinates of the point po(P, e, f )  

8 2) in B, are given by 
0 5 9  ' 

function of r only. The metric tensors G for the 

the body Bo, can be obtained from Eqs. (1) and (2) as 

ij' 

r 1 

I J 
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b 
and 

Y 
u 

where W = Z - s = w  (%) , a func t ion  of r only ,  denotes the  a x i a l  displacement 

of t h e  po in t  PO 
usual  summation convention is ,  of coi;rse, used i n  t h e  above equat ion  and i n  

all of t h e  fol lowing work unless  e x p l i c i t l y  s t a t e d  otherwise.  

, and a prime denotes t o t a l  d e r i v a t i v e  with r e spec t  t o  r. The 

i j  i j  

i j  

The con t r ava r i an t  me t r i c  tensors  G and g can be e a s i l y  obtained from 

Eqs. (3) and (4). 

mat r ix  of elements of g i j  i n  Eq.  (4) i n  a r o u t i n e  manner. 

G i j  i s  t r i v i a l l y  obtained;  g is  obtained by i n v e r t i n g  the  

Thus we have, 

and 

1 
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We now have a complete metric description of bodies Bo and E. We may 

mention here that we chose to imbed the (r, 0 ,  Z )system in the strained 

body rather than the unstrained body for then the equilibrium equations retain 

their customary form. 

As is reasonable for solid propellant materials, we make the assumption 

that the core material in question is incompressible. Mathematically this 

corresponds to the constraint that I 

maintain a unit value. 

of the matrices in Eqs. (3) and ( 4 ) ,  respectively, we have the following 

incompressibility condition: 

the third strain invariant,should 
3’  

A s  I = G/g also, where G and g are the determinants 
3 

Simple integration of Eq. (7) and subsequent evolution gives 

wherein the negative root is discarded for obvious reasons and K is an arbitrary 

constant of integration. From Eq. (8) we readily obtain 

and it is immediately clear that we should discard the negative sign since we 

do not expect the rocket motor to turn inside out under the given set sf body 

forces. 
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c 

We see that a positive value of K implies an inward slump and a negative value 

the opposite. K is clearly zero in the infinitesimal strain theory solution. 

For an incompressible material the first two strain invariants I1 and I2 

are respectively given by 

rs 
I1 = g Grs (loa) 

and 12 = grs G (lob) 
rs 

which become, on using Eqs. (3) to (6), 

and 

We shall need the contravariant tensor Bij given by 

ij ir js Bij = Ilg - g g Grs 

ij 
The matrix of the components of B 

( 3 ) ,  (6) and (lla): 

takes the following form on using Eqs .  
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[B i j l -  

Y 

0 

0 

0 

- 
For convenience, let 

p - 2 . Q  

where Q = Q(r) is a dimensionless function of r only. From Eq. (7) we obtain 

p' = LL6 
P 

wherein we have discarded the negative sign. Then, from Eq. (14) it follows 

that 

Equation (1 -, for the incompressible core, simplifies to 
- 

0 0' 

1 &' 
0 
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The con t r ava r i an t  s t r e s s  tensor  components are formal ly  given by 

wherein, f o r  Ig = 1, 

W = W ( I 1 ,  I ) being t h e  s t r a i n  energy dens i ty  func t ion  g iv ing  t h e  e las t ic  

p o t e n t i a l  p e r  u n i t  volume of t h e  uns t ra ined  body; B i j  is t h e  t e n s o r  given 
2 i 

c by Eq. (16)  and is a uniform hydros t a t i c  p re s su re  which must be c a l c u l a t e d  

from t h e  equi l ibr ium equat ions  and t h e  boundary cond i t ions  f o r  t h e  problem, 

I n  view of Eqs. (51, (61, (141, (151, and (161, from Eqs. ( 1 7 )  we ob ta in  

t h e  fol lowing s t r e s s  t e n s o r  components: 
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The equilibrium equations are given 

where I>. denotes covariant differention with respect to the variables 9' 
1 

/cl. is the local density in the deformed body and Fj is the contravariant 

component of the body force vector per unit mass. 

ij 
We recall that the covariant derivative D A of a contravariant tensor r 

Ai' is given by 
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t 

c 
6 

where the  C h r i s t o f f e l  symbols FA. a r e  given by 
J 

For t h e  po la r  c y l i n d r i c a l  coordinate  system whose me t r i c  t enso r  i s  descr ibed  by 

Eq. ( 3 ) ,  Eq. (22) gives  t h e  only  non-zero rtj t o  be 

Using Eqs. (21), t he  equ i l ib r ium equat ions (20) become 

where ri have t h e  va lues  given by Eq. (23). The i n e r t i a  terms i n  Eqs. (20) 

and (24) have been neglected as  a r e s u l t  of our  assumption of t he  body f o r c e  

be ing  appl ied  gradual ly  only. Equation (24)  reduce t o  the  fol lowing 

s i n c e  the  equat ion  corresponding t o  j = 2 i s  i c m t i c a l l y  s a t i s f - s d ,  a l l  q u a n t i t i e s  

are independent of t and the  only non-zero body f o r c e  component per  u n i t  mass 

is t h e  a c c e l e r a t i o n  due t o  g rav i ty  a. 
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t 

Equation (25b) can be e a s i l y  solved on r e a l i z i n g  t h a t  f o r  an incompressible  

ma te r i a l  t he  dens i ty  does not  change. Thus we have, on i n t e g r a t i o n ,  

where & w a n d  D i s  an a r b i t r a r y  cons tan t  of i n t e g r a t i o n .  

43 
S u b s t i t u t i n g  f o r  from Eq. (19) and so lv ing  f o r  w' we ob ta in  

/ 4D -%x2 u t -  - 2%(4&1+ *) (2-7) 

I f  Eq.(27) could be i n t e g r a t e d ,  the form of w would be known t o  wi th in  two 

a r b i t r a r y  cons tan ts .  This ,  however, can not  be done till the  exac t  forms of 

9 and 'f are known. I f  we assume, now, t h a t  t he  s t r a i n  energy 

d e n s i t y  f u n c t i o n w  is  descr ibed by the  MooneyC4' equat ion ,  

+- 

I '  

i '  

W = W ( I , , 1 2 )  =C, ( I , -3 )+C, ( I2 -3 )  (28) 

where C and C are cons t an t s ,  we ob ta in ,  from Eq. (la), 
1 2 

iJ = z c ,  * = 2 c ,  

Equation (27) now becomes 
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which can be integrated since from Eqs. (9) and (14) we obtain 

Q2 I c+ K 
Jt'- 

(3' 1 

On carrying out the integration it is possi>le, after a few steps, to arrive 

at the following expression for w: 

+E 

- - - (3 -L ,  

x e 
&=-' 

4 D ( C , + C z )  +xcc,u ILn, c,Qz+cz. 
c, +cz $K, +Cz) 1 w- =[ 

8(G +Cr)= 

where E is an arbitrary constant of integration. Constants E m d  D will have 

to be evaluated from the boundary conditions at the insi.de and the outside 

surfaces. 

Before attempting to apply the boundary conditions, we need to consider the 

first equilibrium equation, Eq. (25a), which has not been used so far. Substituting 

in Eq. (25a) from Eq. (19) and (29) gives, after a few algebraic steps, 

- - 433) 
On integration of Eq. (33) we have 

I -  

- (34) 

where F is an arbitrary constant of integration. As the forms of the functism 
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w '  and Q are known through Eqs. (30) and (31 ) ,  t he  i n t e g r a l  on t h e  r i g h t  hand 

s i d e  of Eq. (34 )  can be eva lua ted ,  Omitting d e t a i l s  of t he  elementary but  

ted ious  process  of i n t e g r a t i o n  involved, we write down the  fol lowing r e s u l t :  

and 

J 2 c, K 
o(= 

cc +c2 
Let us now assume t h a t  t he  c i r cumfe ren t i a l  s t r a i n s  i n  the  o u t e r  p a r t  of 

t he  core  w i l l  remain s u f f i c i e n t l y  small so t h a t  t h e  c i r cumfe ren t i a l  s t r a i n  

i n  the  case  remains wi th in  the  l i m i t s  of a p p l i c a b i l i t y  of t he  Hooke's law. 

As i t  is  reasonable  t o  expect  t h e  o u t e r  p a r t  of t he  core  t o  experience very 

s m a l l  s t r a i n s  even when the  core  s t r a i n s  a r e  r a t h e r  l a r g e  i n  the  i n t e r i o r  

p a r t ,  our  assumption i s  r e a l i s t i c .  

I n  view of t he  above, t he  boundary condi t ions  f o r  the  problem may be 

w r i t t e n  down, i n  words, as:  

1. Axial displacement should vanish a t  t he  ou te r  boundary of t h e  co re ,  
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2. The radial component of traction on the outside deformed surface should 

be proportional to the local radial displacement, and 

3. The inner boundary of the core should be traction-free. 

The first boundary condition, which eliminates rigid body translation 

in the axial direction can be rewritten as 

Using Eq. (32) it is not difficult to obtain the following value for the 

constant E: 

7 Q, being the value of Q at r f r . Q,? P t Z -  b z + k  
1 

where 
an1 4: 

r2 We shall use, in what follows, the notation Q for the value of Q at r = 

defined in a similar manner. 
2 

In view of Eq. (38 ) ,  Eq.  (32) now becomes 

D and K are the only two unknown quantities in Eq. (39 ) .  Their determination 

obtains through the use of the remaining two boundary conditions. 
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r 
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If we denote the traction p' on the outside and the inside curved 

surfaces by subscripts 1 and 2 in parentheses, respectively, we have, 

n where n 

deformed body B. In this case 

are the components of the unit surface normal to the 
1' n23 3 

n l = l ,  n = n  = O  
2 3 

J 

Hence, from Eq. (40), 

Ik 
where Z = Since the inner cylindrical surface of the core must 

be traction-free, it follows from Eq. (41) that 
(1) 
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where Eqs. (19) and (29) have been used along with the following notations: 

(44)  

Substituting in Eq. (43a) from Eq. (35), the value of the constant F can be 

evaluated as 

2 (x: +oc2) 1- } ..c= - 
2(2.’, t OC’) 

c a  

8CC, + C+if 
- 

- -  (45) 
With this value of F, Eq. (35) for /3 contains only two unknowns, D and K, as 

does Eq. (39) for w. 

Eq. (43b) is ambiguous as it stands. It implies either of the following 

two conditions: 

or 
C Q  2 + C 2 = 0  
1 2  

We ignore Eq. (46b) on the following grounds. Eq. (46b) implies that 
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t 

I- 
1 

This a s s e r t s  t h a t  once the  i n i t i a l  inner  r ad ius  and the  material cons tan ts  

a r e  known, t he  r a d i a l  change i n  geometry is decided,  r ega rd le s s  of t he  va lue  

of “d , the  s p e c i f i c  weight of the ma te r i a l .  Equation (46b) i s  thus discarded 

by r educ t io  ad absurdum, leaving  Eq. (46a) as the  only boundary cond i t ion  

r e s u l t i n g  from Eq. (43b). Imposing t h i s  condi t ion  on Eq. (30), we can so lve  

f o r  D. We g e t  thereby,  

and, i n  tu rn ,  from Eq. (36a, b ) ,  

The only unknown at  t h i s  s tage  i s  K ,  which can be eva lua ted  by the  use 

of t h e  remaining boundary condi t ion,  namely, t he  one s t a t i n g  t h a t  t he  r a d i a l  

component of t r a c t i o n  on the  deformed o u t s i d e  su r face  should be propor t iona l  

t o  the  l o c a l  r a d i a l  displacement.  

boundary of t h e  core  i s  

The r a d i a l  displacement a t  t h e  e x t e r i o r  
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i. 

The r a d i a l  component of t he  surface t r a c t i o n  a t  r = r i s  
1' 

r 

As befo re ,  t h e  p a r e n t h e t i c a l  subsc r ip t  u n i t y  designates  the f a c t  t h a t  t h e  

va lue  of t h e  q u a n t i t y  i s  computed a t  r = r 

i s  based on Eqs. (19) and (29). 

The rightmost t e r m  of Eq. (49) 1' 

&j 
The physical  components of , according t o  Green and Zerna, are given 

by 

. 

W 
As G = GI, = 1, we have 

and thus ,  

The s t a t e d  boundary condi t ion can now be expressed as 

c 
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and, using Eqs. (48) and (52), it can be recast in the form 

The quantity k in Eqs. (53) and (54) is the constant of proportionality, 

called the radial stiffness of the casing. Equation (539 defines k ; it is 

the internal pressure needed to cause a urrit increase in the case radius. 

The negative sign in Eq. (53) takes into accsuat the fact that if the 

displacement b, 

negative. 

, is positive, the associated radial stress will be 

As the only unknown in Eq. (54) is K, which enters h,$,&k, implicitly, 

Eq. (54) constitutes an equation in K. Using Eqs. (35), (45) and (47), we 

may rewrite Eq. (54) explicitly in terms of K as 

c 

where oL is given by Eq. (36c) and B and s are given by Eqs. (47b,e9. 

possibility of our being able to solve the problem hinges entirely OD our  

being able to solve the above transcendental equation in K, 

determined, Q and w can be deterrniried from Eqs. (31) and (391 ,  r itself being 

determinate through Eq. (8). 

and w' can be computed through the use of Eqs. (30) and (67a). The metric 

The 

Once K is 

The quantity p' can be computed by using Eq. (15) 



-22- 

ij tensors g and g can then be evaluated through Eqs. ( 4 )  and ( 6 ) ,  respectively. 
ij 

Other quantities of interest can be calculated easily also. Radial 

displacement,at r = rl for example, is easy to find through Eq. (48); that 

at r = r can be found by using a similar obvious 2 

The physical stress components 6k,60,6a,$acan 

(19), (29) and (50). The quantity p appearing in 
from Eq. ( 3 5 ) .  The constant F in Eq. ( 3 5 )  has to 

Eq. ( 4 5 ) .  

f ormu 1 a. 

be obtained through Eqs. 

Eq. (19) can be obtained 

be evaluated as in 
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Applicat ion of t he  Theory 

To i l l u s t r a t e  the  use of t he  above theory,  l e t  us  choose the  fol lowing 

da ta :  

6 Tens i le  modulus of t he  f i b e r g l a s  case ,  E = 5x10 p s i  

Poisson ' s  r a t i o  of t he  f i b e r g l a s  case ,  p = 0.2 

Case th ickness ,  t = 0. 125 in .  

I n i t i a l  i n t e r n a l  r ad ius  of the  c a s e ,  = 18.625 in .  

I n i t i a l  i n t e r n a l  r ad ius  of t he  core ,  = 1.3, 7 ,  10 ins .  

Equi l ibr ium t e n s i l e  modulus fo r  t he  core,Eo = 600 p s i  

S p e c i f i c  weight of the  p rope l l an t ,  = 0.063 l b s / i n  

C 

3 

The th ree  valued of p, 
rocke t  motor. The above d a t a  a r e  the  same a s  those used i n  the  previous r e p o r t .  

They a r e  t y p i c a l  of rocke t  motor XM-57 of the  Hercules Powder Company, S a l t  

Lake Ci ty ,  Utah. 

correspond t o  d i f f e r e n t  t r ansve r se  s e c t i o n s  of t h e  

Before the  theory of t h e  preceding s e c t i o n  can be app l i ed ,  we must c a l c u l a t e  

t he  va lues  of 

be i n f i n i t e s i m a l ,  t he  r e s u l t s  of the  c l a s s i c a l  theory of e l a s t i c i t y  can be 

app l i ed  t o  eva lua te  k us ing  the  following' equat ion:  

k. , C, , Cz e Assuming t h a t  t he  s t r a i n s  i n  the  case w i l l  

r +  

1 
See, f o r  example, Reference t 4 ]  
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For the chosen data we have 

. k = 1877 psi/inch (56 b) 

As regards the values of C and C2 to be used, we must indulge in some 
1 

estimation for the lack of actual data based on finite deformation theory 

concerning the material in question. Since the Mooney expression, Eq. (28), 

must be valid for the infinitesimal strain regime also, it can be proven easily, 

from an analysis of a simple state of tensile stress, that the quantity 

C + C and the modulus of elasticity E are related by the expression 1 2  0 

. 

Eo = 6(C1 + C2) 

For the assumed value of E = 600 psi, we have 
0 

C + C = 100 psi 
1 2  

(57 1 

Now, if a reasonable ratio of magnitudes can be estimated, 

of C1 and C individually. Choosing C = I C  

from Eq. (58), 

we can obtain values 

for example, we obtain, 
2 2 5 1’ 

C1. = 8 3 . 3  psi 

C2 = 16.7 psi 

We shall use these values in subsequent computations. 

As it stands, Eq. (55) contains the following variables: 

P, 7 ‘d 9 P oc 1 

(59) 
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Out of these, p, and are given and .k , c,, Clare quantities calculated 
above from given quantities. The remaining variables, namely, zL,,\2,0c,p,6, 

directly or indirectly, involve the unknown K alongwith other given quantities. 

Once a value of pz is chosen, all these quantities can be evaluated in terms 
of K. Equation (55) then would contain K as the only unknown. The equation 

was solved using IBM digital computers 1620 and 7090 for the three values 

of e given above. 

number of points through the core thickness. Calculations were repeated using 

factors of 10, 100 and 1000 t o  multiply the specific weight in order to study 

the effect of inertia forces under accelerations. The stiffness of the 

the case was changed through various multiples, namely, 10 , 10 , 10 , 

10, 10 and 10 , thus ranging almost from no case to a completely rigid case. 

Various quantities of interest were computed for a 

-6 -3 -1 

3 6 

4 
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Discussion of Resu l t s  

We s h a l l  r e f e r  t o  t h e  problem da ta  with k = 1877 ps i /2n  and 7= 0.063 
3 l b s / i n  

Let us de f ine  two dimensionless f a c t o r s :  

N ,  t h e  g r a v i t y  f a c t o r .  

of t h e  cas ing  considered t o  the  case s t i f f n e s s  i n  t h e  b a s i c  problem; t h e  

second one i n d i c a t e s  t h e  r a t i o  of the body fo rce  p e r  u n i t  mass considered 

t o  t h a t  i n  t h e  b a s i c  problem, Introduct ion of  t hese  two f a c t o r s  w i l l  ease 

our  d iscuss ion  of t h e  e f f e c t s  of changes i n  cas ing  s t i f f n e s s  and body force .  

I n  a d d i t i o n ,  we s h a l l  r e f e r  t o  t h e  common logari thms of M and N ,  namely, 

logloM and logloN,  as logar i thmic  case s t i f f n e s s  factor M 

g r a v i t y  f a c t o r  N' , r e spec t ive ly .  

fundamental about t h e  b a s i c  problem, w e  choose t o  use t h i s  terminology f o r  

t h e  sake of convenience. 

as t h e  b a s i c  da t a  and t h e  corresponding problem, t h e  b a s i c  problem, 

M ,  t h e  case s t i f f n e s s  f a c t o r ,  and 

The first one i n d i c a t e s  t h e  r a t i o  of t h e  s t i f f n e s s  

/ 
and logar i thmic  

Although t h e r e  i s  noth ing  i n t r i n s i c a l l y  

The f i g u r e s  may be d iv ided  i n t o  t h r e e  s e r i e s .  Figures  1-6 desc r ibe  

v a r i a t i o n  of w ,  u, 6r, 6 , 6 and crz with r a d i u s  f o r  t h e  case of My = 0 

and N' = 3,  

of u, 6,,d, a n d 6 s w i t h  M' f o r  N' = 3. F i n a l l y ,  i n  Figs. 11-16 are p l o t t e d  

c e r t a i n  func t ions  of w,  u ,  dr, d, , dZand G g a g a i n s t  t h e  g r a v i t y  factor N. 

I n  a l l  t he  f i g u r e s  t h r e e  curves a r e  given corresponding t o  p = 1.3,7 and 

10 inches.  

e z  
Figures  7-10 descr ibe  the  dependence of t h e  maximum values  

2 

In  Figs. 1-10 we have chosen a g rav i ty  f a c t o r  of one thousand, which i s  

a r a t h e r  high value. 

under l a r g e  g r a v i t y  f a c t o r s ,  w e  considered it d e s i r a b l e  t o  demonstrate t h e  

r e s u l t s  f o r  such a l a r g e  value of  N ,  Bes ides , i t  was found t h a t  a l l  t h e  

q u a n t i t i e s  were of r a t h e r  small value f o r  N = 1 and t h e  second o rde r  e f f e c t s  

a s s o c i a t e d  with l a r g e  s t r a i n s  were not t oo  marked. A l a r g e r  value of N was 

t h u s  cons idered  more appropr ia te  f o r  t h e  purpose of demonstration o f  r e s u l t s .  

As Figs. 10-16 c o r r e l a t e  t h e  maximum values  of var ious q u a n t i t i e s  f o r  d i f f e r e n t  

va lues  of N ,  on ly  one value of N has been chosen i n  Figs ,  1-10 f o r  demonstration, 

I t  should be poin ted  out  here  t h a t  in  p r a c t i c e ,  before  applying the  theo ry  t o  

such high values  o f  N ,  one would be requi red  t o  check t h e  case and core s t r a i n s  

However, as slump problems are p a r t i c u l a r l y  important 
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t o  see i f  the  s t r a i n s  are within the l i m i t s  of a p p l i c a b i l i t y  of t h e  l i n e a r  

t heo ry  f o r  t h e  case and t h e  Mooney expression for  t h e  core. 

The graphs of w v e r s u s f i n  Fig, 1, show t h e  t y p i c a l  p a r a b o l i c  v a r i a t i o n  

of  t h e  l i n e a r  theory.  

s t r a i n  theory agree with those  from t h e  l i n e a r  t heo ry  of e l a s t i c i t y  t o  within 

one pe rcen t ,  t h e  agreement being even b e t t e r  for  smaller values of N, 
important conclusion i s  t h a t ,  i n  general ,  if t h e  a x i a l  displacements are t h e  

only q u a n t i t i e s  of i n t e r e s t ,  t h e  nonl inear  a n a l y s i s  i s  unnecessary,  even f o r  

r a t h e r  high values  of  g r a v i t y  f ac to r .  This, however, is  no t  so i n  Fig, 2 

where u i s  shown as a funct ion of p. 
theory t h e r e  should be no r a d i a l  displacement at a l l .  
u denotes  t h e  depa r tu re  from t h e  l i n e a r  theory.  

is inwards and inc reases  r a t h e r  r ap id ly  towards t h e  p e r f o r a t i o n  o f  t h e  core. 

Notice t h a t  t h e  magnitude of u fo r  a given value o f  

As a matter of fac t ,  t h e  values of w f r o m  t h e  f i n i t e  

An 

We recal l  t h a t  according t o  t h e  l i n e a r  

Thus t h e  magnitude of 

We no te  t h a t  t h e  displacement 

i s  t h e  smallest f o r  P 
I 

11 11 11 

f 2  = 10 , t h e  l a r g e s t  forfp = 7 , t h a t  f o r  p2 = 1.3 being intermediate .  

This  cuqious behavior can be seen t o  be p l a u s i b l e  by observing t h e  fact t h a t  

compared with t h e  case of  p2 = 7 , t h e r e  is  no t  enough material t o  cause 

inward slump i n  t h e  case ofp2 = 1 0  , while i n  t h e  case o f  p2 = 1.3 , t h e r e  
is enough material t o  resist l a r g e  inward slump. 

c o n s i d e r  P2 = 1.3 as t h e  worst case as t h e  magnitude of  t h e  maximum inward 

displacement is by far  t h e  l a r g e s t  i n  t h i s  cases 

11 

I 1  11 

However, we should s t i l l  
11 

Figures  3 and 4 show t h e  r a d i a l  v a r i a t i o n s  i n  t h e  r a d i a l  and c i r c u m f e r e n t i a l  
J stresses f o r  N = 3, As expected f o r  a t r a c t i o n - f r e e  boundary, t h e  r a d i a l  

stresses are ze ro  a t  t h e  bore. 

free of r a d i a l  stress. The maximum r a d i a l ' s t r e s s  does not  occur a t  t h e  o u t e r  

core  boundary, b u t  occurs,  i n s t e a d ,  a t  some in t e rmed ia t e  value of f,, 
value is c l o s e r  t o  p2, t h e  smaller t h e  value o f  p 2. 

t h e  r a d i a l  stresses i n  a l l  cases are  compressive, except f o e  t h e  case of p2= 1.3 

where a zone n'ear t h e  case is subjected t o  t e n s i l e  stresses. The c i r c u m f e r e n t i a l  

stress does not  vanish a t  the  inne r  boundary, although f o r  p2 = 7 

its magnitude is r a t h e r  small a t  the bore, 

i n  t h e  v i c i n i t y  o f  t h e  bore but  tensi le  i n  t h e  v i c i n i t y  of  t h e  case. 

The core-case i n t e r f a c e  is ,  i n  gene ra l ,  n o t  

This 

I t  is s u r p r i s i n g  t h a t  
I 1  

I1 11 

and 10  , 
The stresses are compressive i n  t h e  

The 
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maximum va lues  of t h e  r a d i a l  and c i r cumfe ren t i a l  stresses are of t h e  same 

o r d e r  of  magnitude. 

Axial  stresses assume r a t h e r  l a rge  values ,  as can be seen i n  Fig. 5. 

This i s  p a r t i c u l a r l y  noteworthy i n  view of  t h e  fact t h a t  t h e  ax ia l  stress 

vanishes i n  t h e  l i n e a r  theory solut ion.  

are p r imar i ly  t e n s i l e  except f o r  a r a t h e r  narrow band i n  t h e  v i c i n i t y  of t h e  

bore. T h e i r  maximum values can be seen t o  be a t  t h e  o u t e r  r ad ius  of t h e  core. 

We n o t i c e  t h a t  t h e  ax ia l  stresses 

The f i n a l  f i g u r e  of t h e  s e r i e s ,  Fig, 6 ,  shows t h e  r a d i a l  v a r i a t i o n  of 2,. 
The va lues  o f  & a  are almost,  but  no t  q u i t e ,  equal  t o  those  ob ta ined  by t h e  

l i n e a r  theory which g ives  values  not more than  one percent  smaller. This is  

i n  agreement with what could be expected from very simple considerat ions.  The 

s h e a r  stress at  any r a d i u s  can be ca l cu la t ed  by uniformly d i s t r i b u t i n g  t h e  

weight of t h e  core  i n t e r i o r  t o  a cy l inde r  of  t h a t  r a d i u s  ove r  t h e  area of t h e  

curved s u r f a c e  of t h a t  cyl inder .  

o f  t h e  c y l i n d e r  would be taken as t h e  i n i t i a l  value while  t h e  f i n i t e  theory 

would t a k e  it as re 
t h e o r i e s  are close,, The l a r g e s t  shear  stress i s  a t  t h e  core-case i n t e r f a c e  as 

would be expected. 

According t o  t h e  l i n e a r  t heo ry  t h e  r a d i u s  

P 
As f and r d i f f e r  only s l i g h t l y ,  t h e  p r e d i c t i o n s  of t h e  

The next  ser ies  of  f i g u r e s  shows t h e  manner i n  which t h e  maximum 

magnitudes of var ious q u a n t i t i e s ,  indicated by s u f f i x  "max" , depend upon 

t h e  case s t i f f n e s s ,  A s  t h e  axial displacement and t h e  a x i a l  s h e a r  stress 

are almost i n s e n s i t i v e  t o  a change i n  M , t h e i r  p l o t s  a r e  

We observe i n  Fig. 7 t h a t ,  f o r  very small values  of  M', 

very s l i g h t l y  with inc reas ing  M , almost suddenly starts decreasing i n  

magnitude a t  almost cons t an t  ra te  f o r  intermediate  values  o f  M' and again 

starts decreasing verv qlowly for  r a t h e r  high values of  M , u n t f l  it vanishes 

f o r  M' = 6, 

of M' 

t o  stiff cases, t h e  p l a t eaus  being joined by a smooth curve with 

1 dec reas ing  monotonically, The f a c t  t h a t  t h e  p l a t eau  for  high M corresponds 

t o  Umax = 0 is a consequence of t h e  assumed incompress ib i l i t y  and plane 

J 
no t  included. 

Urnaxdecreases ' 

' 
Thus, w e  observe d i s t i n c t  p l a t eaus  i n  t h e  curves f o r  l o w  values  

corresponding t o  s o f t  cases and f o r  high values of  M' corresponding 

U max 
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s t r a i n , ,  An i n f i n i t e l y  r i g i d  case would permit no r a d i a l  displacement at t h e  

core-case i n t e r f a c e  and t o  preserve t h e  c ros s - sec t iona l  area, no r a d i a l  displacement 

anywhere i n  t h e  core,  
I 

We n o t i c e  again t h a t  f o r  low va lues  of  M , for  

= 7" i s  t h e  largest.,  

remaining f i g u r e s  o f  t h e  series, Figs .  8-10, f o r  t h e  maximum values  of  

The two-plateau behavior is again manifest  i n  t h e  
P 2  

br, 60 and 6,. 

The las t  series of  f i g u r e s ,  F i g s ,  11-16, show t h e  v a r i a t i o n  o f  t h e  

m a x i m u m  values o f  t h e  displacements and stresses with t h e  g r a v i t y  f a c t o r .  

Whereas N' is taken as t h e  abscissa, t h e  o r d i n a t e s  are chosen t o  r ep resen t  

q u a n t i t i e s  of t h e  type log  

r a t i o n a l e  i n  mind, 

when N does. 

Wmax 1 This is done with t h e  fol lowing simple 
N L e t  V be a quan t i ty  which is dependent on N and vanishes 

If ,  now, t h e  dependence of  V on N is  l inear ,  t hen  

v = a N  

where a is  a cons t an t ,  Further ,  

= b  

where b is a c o n s t a n t  also, 

The graph of log V 

l i n e ,  If it is known f o r  a fact t h a t  V = 0 when N = 0 ,  any depa r tu re  f r o m  

h o r i z o n t a l i t y  r e p r e s e n t s  a departure from l i n e a r i t y  i n  t h e  V - N r e l a t i o n ,  

Logarithms are used he re  t o  shr ink t h e  graphs,  

guarantee t h e  ex i s t ence  of logarithms. 

f o r  N = 0 ,  t h e  above reasoning app l i e s  t o  a l l  of t h e  Figs ,  11 - 16, 

v s o  N or  l o g  N should,  hence, be a h o r i z o n t a l  s t r a i g h t  i,l 

Absolute values  are used t o  

As a l l  t h e  v a r i a b l e s  considered vanish 

c 
We observe i n  Figs 11 and 16,  r e s p e c t i v e l y ,  t h a t  Umax and ( &,it Imax 

are l i n e a r l y  r e l a t e d  t o  N as they are  almost e x a c t l y  t h e  same as i n  t h e  l i n e a r  

theory,  

r e s p e c t  t o  N o  

The r e l a t i o n  of  a l l  t h e  o the r  v a r i a b l e s  considered is  non l inea r  with 
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In  t h e  case of Figs. 1 2  - 15, inc lus ive ,  w e  observe t h a t  although t h e  

p l o t t e d  graphs are n o t  ho r i zon ta l ,  they are l inear ,  or almost l i n e a r ,  f o r  t h e s e  

casesD 

t h e  power l a w  

A l i t t l e  a n a l y s i s  shows t h a t  t h i s  impl ies  t h a t  V and N are r e l a t e d  by 

d + l  V = cN 

( 6 r'max' where V is  t h e  va r i ab le  i n  quest ion ( i n  t h i s  case, e i t h e r  Urnax, 

( 6, 
graph of log  

r e l a t i o n  can approximated by 

o r  ( 6z)max)  and c and d are cons tan ts ,  d being the  s lope  of t h e  

VS. l og  N. As for a l l  t h e  l a t t e r  f i g u r e s  d "1, t h e  V - N 

2 I V l  = cN , 

which i s  a u s e f u l  r e s u l t  i n  a r r i v i n g  at values  of  V f o r  a given N from t h e  

knowledge of  t h e  va lue  f o r  another  N. 
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